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Abstract

We discuss generalisations of Jacobi fields and Raychaudhuri’s equation from the geodesic case
to that of an arbitrary system of second-order ODEs. Our results are obtained using a natural choice
of linear connection on evolution space.
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1. Introduction

In this work, we aim to generalise parts of the geometry of geodesics on a Riemannian
manifold with linear connection to the solutions of an arbitrary system of second-order ordi-
nary differential equations. In particular, we give a generalisation of the geodesic deviation
equation, and Raychaudhuri's equation.

We represent a system of equations

= et x, %)

on a configuration manifold by a vector field" (called a second-order differential equa-
tion field or SODE) on thevolution spacé := R x TM. Our generalisation then uses two
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constructions fronT”, both onE: firstly a linear connection (with torsiony;, and secondly

a type(l, 1) tensor field,A -, which describes the deformation of the tangent spacés of
due to the flow generated k. This second object can be defined on any differentiable
manifold N with linear connectionV, associated torsiofi and local vector fieldZ. De-
noting parallel transport using on N by 7, and denoting the flow generated Byby ¢;,

we have the following definition.

Definition 1.1.

d
Az@) = & 17 X(04E), where £ € TyN.
t=0

Maps defined in this way are examples of what we will shipe mapss we will see itis
not always necessary to have a linear connection in order to define such maps. The simplest
possible case is that & with the Euclidean metric and flat connection: the corresponding
map can be used in the geometric analysis of planar flowd188e

Theorem 1.2.

A7) =VeZ+T(Zy, ), & eTN.

Proof. Let X be the field obtained by Lie draggi§galong the integral curve df through
x. Then

d
Az ()= a (7 X 0) = (V2 X))y = (VX Z2)x + T(Z, X)x + (L2 X)x
t=0

= V%'Z + T(ZXa 5),
where we have usefi(X,Y) = VxY — VyX —[X,Y]and£LzX = 0. O

When the connection is symmetric; is just VZ, the covariant differential of. The
generalised Raychaudhuri equation is obtained by assumiagyeodesic with respect to
V and taking the trace of A ;. Vector fields satisfyingdi X = VzX along a geodesic
field Z can be shown to satisfy a generalised Jacobi’s equation. We will elaborate on these
ideas and apply them t6 andA .

The present paper is a development of two earlier onef3]InCrampin and Prince
discussed the conventional case of the Levi-Civita connection and related Raychaudhuri’'s
equation on the configuration spadeto a universal equation oFM involving the geodesic
sprayl’. They introduced the mapz on TM but they did not, however, introduce a linear
connection or a mag . In a second papg¥], Jerie and Prince generalised the results of
Crampin and Princf8] to an arbitrary system of second-order ODEs by introducing a map
Az (thistime onT (R x M)) in the absence of a linear connection. We demonstrated that our
generalised Raychaudhuri equation does describe caustics and singularities of congruences
of solution curvesin an exactly analogous manner to its traditional counterpart, so effectively
used in general relativity (see, for example, the bd6Kes7]). In the current paper, we give an
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alternative derivation of the generalised Raychaudhuri equati®@voM and revisit the Ja-
cobi field idea, but most importantly we introduce a linear connecticand the mapt - on
E, develop both Raychaudhuriand Jacobi equatiorfsand relate these to our earlier work.
This paper is set out as follows. 8ection 2we give a brief account of the Riemannian
setting. InSection 3we introduce evolution spade, and show how the ideas 8kction 2
apply to the solutions of an arbitrary system of SODESkttion 4we describe a linear
connectiorV on E, and inSection Swe show howA - and the linear connection combine
to give a more satisfactory global version of the SODE case treat®édtion 3 Section 6
discusses the Raychaudhuri and Jacobi equations associated witkppendix Adeals
with the tensorial character df.

2. The Riemannian setting: Raychaudhuri’s equation and Jacobi tensors

For the sake of completeness we very briefly describe the relevant parts of Crampin
and Princg3] (our first papef7] gives a more self-contained account). The setting is an
n-dimensional smooth manifold equipped with a metrig and its symmetric, linear
connectionV. Define a typg1, 1) tensor fieldA ; associated with a local vector fielon
M by comparing Lie transport with parallel transport:

Az = % . 1o gy (2.1)
Hereg, is the flow generated by, andzt, the parallel transport map alogg The trace of
Az is a measure of the divergence®f Raychaudhuri's equation describes the evolution
of this trace along the flow when is geodesic. For any tangent taV it is simple to show
thatAz(§) = Ve Z, and if Z is geodesic (more correctly auto-parallel) then the propagation
equation forAz alongZ is

LzA7 =VzAz; = —R; — A2, (2.2)

whereRy is the type(1, 1) tensor field obtained from the Riemann curvature, Riemann, of
the connection by

Rz (X) := RiemannX, Z2)Z.

Since the operations of taking the trace and Lie differentiation commute, the tfage(8f2)
is Raychaudhuri’'s equation.
The propagatiorquation (2.2js also the key to a simple derivation of the Jacobi equation
and its extension to tensor fields. Any Lie-dragged vector fiellong an integral curve
of Z satisfieSVéX = Az(X) and one immediately has

VIX = (VzAZ2)(X) + AZ(X) = —Rz(X).

Similarly, any tensor field’ alongs with Vi J = Az o J satisfies the Jacobi tensor field
equation

V§J+RzoJ=o.



354 M. Jerie, G.E. Prince/Journal of Geometry and Physics 43 (2002) 351-370

3. The SODE setting: Raychaudhuri’s equation and Jacobi tensors

In what follows, we will be analysing a system of second-order differential equations
X = fU, x, x) (3.2)

on a manifoldM with local coordinategx?) and with associated bundlgs. Rx M — M,
t:RxM—R andnf . E — R x M. The geodesic equations are, of course, a special
example and one might expect the analysis to be modelled on that situation. However, we
take the position that even the autonomous case is best describrtended configuration
spaceR x M and evolution spac& := R x TM and that one should put aside the fact
that historically autonomous systems were discusset and its tangent and cotangent
bundles. While the pap¢8] did not use this more general setting, we refer the reader to
the paper$l1,12]for a fully nonautonomous treatment of the geodesic case (in the context
of projective differential geometry). The papé4s7] are basic references for the material
in this section.

From(3.1)we construct orE (with local, adapted coordinatés x4, u?)) an SODE:

r d 4 ul + g 0
= — u .
ot x4 u?

whose integral curves are the 1-jets of the solution curves of the given equations.
The vertical and contact structures of the bundle E — R x M are combined i$, an
intrinsic (1, 1) tensor field onE’ and known as theertical endomorphisnin coordinates:

S=V,®060% (3.3)

(3.2)

whereV, := d/du® are the vertical basis fields affl := dx? — u“ dr are the local contact
forms. From the first-order deformatiod,~S, a nonlinear connectioris constructed as
follows: LS has eigenvalues @, —1 with corresponding eigenspaces spanned locally by
I', then verticalfields V, andn horizontalfields

19f¢

0 p 0
¢ e S 29ub’

= 0x¢ ou®
respectively.
The vector field$I", H,, V,} form alocal basis o, with dual basigdr, 9%, v}, where

Y= du® — fhdr + 1760

., where I'? :=

(3.4)

TheI'? form the components of the nonlinear connection thus inducdd. @he resulting
direct sum decomposition df(E) is I = Pr + Py + Py, wherelg is the identity type
(1, 1) tensor field onE, and Pr, Py and Py are the three projection operators given in
coordinates by

Pr =T ®dr, PHZHa®9a, PVZV(I@wa. (35)
(Inour earlier paper, we uséd, P andQ for these projectors: we have changed our notation

for the purpose of comparison in the next section &fh) The components of the Jacobi
endomorphisme = Py o L Py, atype(l, 1) tensor field onE, can be calculated from

(I, H)] = TP H, + @2V, (3.6)
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giving

&=V, ®09 =B -rlrc—ratyv, 64, (3.7)
whereB? := —(3f?/3x%). Other useful results:

[Vl = —Hq+ I}Vy,  [Ha, Hp] = R,Va, (3-8)

this second fact is effectively the definition of the curvatweof the nonlinear connection
rb.

In[4], vertical and horizontal lifts t& of vector fields orR x M are intrinsically defined;
here it suffices to give their coordinate descriptions. Gi¥ea X(R x M) with coordinate
representatio = X°(3/9t) + X%(9/9x%) then

XV = X* - ux%v,, X" = (x* —u*Xx%H,.

This means, for example, that for any vertical vegtos T, (E) there exists a unique vector
N € Tro) (R x M) with dz () = 0 such thap" = pu.

The following simple but important result is obtained usidg:= Py o Ly Py and
Ig = Pr + Py + Py.

Proposition 3.1.
PyoLrPy =—d. (3.9)

In orderto arrive at a generalised Raychaudhuri equation for SODEs we need to introduce
an arbitrary congruence of (graphs) of solution curve@df). We follow [7]: assume the
existence of such a congruence with corresponding local tangentZieldX(R x M).

Then, for local function&Z® onR x M, we can write
ad ad

Z=—+27"—.
at + dx4

The relation betweefd and(3.1)is given by
Z(2%) = [, %", Z").
Z defines alocal sectionz, of 70 : E — R x M by

oz(p) ‘= (p,mxZp).

We will use an overline to indicate the restrictionfinto the image of the section. At the
risk of a mild ambiguity we will also use an overline to denote the pullback by the section,
so that, for examplé)® := dx¢ — Z¢ dr denotes both the restriction and the pullback of the
contact forms. We will also use the symbé&nd:; for section equality and definition
on the section, respectively. Then the fact thas tangent to graphs of solution curves of
(3.1)is expressed ag* = Z(Z%) (as already noted) and 0=07,(Z).

As we explained irf7] we can still define a magz even though we do not have a linear
connection onV/. We do this by using the result that, = o Py in the geodesic case. We
give a brief summary. Puly back fromE toR x M using the section: lét € T,(R x M),
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then Py (0z.&) is vertical, and hence there is a unique veetot 7,(R x M) such that
dr(n) = 0 andn” = Py (0z.£). We denote the linear map— 1 by o} Py, hence

(03Pv(©) = Py(oz:£),  di(osPy) =0. (3.10)

This can be done for any vertiodl, 1) tensor fieldB on E (vertical means tha®y o B = B)
to gjveogB, se€[7]. In particular,® =Py oLrPy is vertical and we will denote ;@
by @ and its dual action on forms b*.

Definition 3.2. We define the typél, 1) tensor fieldAz onR x M associated wittkZ by
Az = U;P\/. (311)
We denote the dual action on 1-formsAly, so thatA”, (w) := w o Az.

In coordinates

9Z4 -\ 8 -
Ay = — + 7 b, 3.12
“ <8xb + b) dxa ® (3.12)

In [7], we show that
LzA7 = —A% — &. (3.13)

The trace of this equation is the generalisation of Raychaudhuri’s equation. Importantly, we

showed thaiEg. (3.13)is the pullback by, of Eq. (3.9) this latter equation being a sort

of universal evolution equation describing all congruences of graphs of solution curves.
The next object to be generalised, at least in part, is the covariant derivative itself. This

derivative is used iff7] to prove that the zeros afracgA,))~! determine congruence

collapse.

Definition 3.3. We define a covariant derivative-like operatomhich acts only along
to be the linear operator with the properties:
(i) V(f) :=Z(f) forall f e C®R x M),
(i) V(X):=[Z,X]+Az(X)forall X € (R x M),
(i) (Vo) (X) = V(o(X)) —o(VX) forallw € ¥*(R x M),
(iv) V acts by the Leibniz rule on tensor and wedge products and commutes with tensor
contractions.

We remark that part (jii) of the definition means that on 1-foivhs: L7 — A%
In our earlier paper, we did not uséor (3.9) in establishingeq. (3.13)but with their
help a much cleaner proof can be achieved which we now present.

Proposition 34. VA; = LzAz andVA% = LA},
Proof. Recall from the definition that, acting on vector fields, oneVias £, + Az. Then

VA7=VoAz;—Azo0V=(Lzs+Az)0A; —Az0(Lz+ Ay)
=Ly70Az —AzoLy=L7A7.



M. Jerie, G.E. Prince/Journal of Geometry and Physics 43 (2002) 351-370
The same result holds for the action4¥ on 1-forms.

The following result could serve as part of an alternative definitiow.of

Lemma35. LetX € X(R x M) such thatds (X) = 0,i.e. X = X%(3/9x%), then
(VX)Y = Py(Lr(x")).
Proof. A straightforward coordinate calculation suffices.

Lemma36. LetX € X(R x M). Then
D(X)=—-V(Az(X) + Az([Z, X]).

357

Proof. By definition® := 0@, hencep (X)" = @ (02, X). Therefore, usingroposition

3.1

@(X)” =—Py o LrPy(02:X) = —Py(Lr(AzX)") + Py (072:(L2X))
=—(V(AzX)Y + Az(Z, X))V,

where we have also usé@mma 3.5n the last step. Hence

D(X) =—-V(Az(X)) + Az([Z, X]).

Lemma3.7.

@* = VoAl +ALoLy —2A%

Proof. This follows from a straightforward dualisation of the resultefnma 3.6

We can now give an alternative and intrinsic proof of the following theorem.

Theorem 3.8.
Lz7A7 = —A% — .

Proof. FromLemma 3.6
®(X) = ~V(Az(X)) + Az(Z, XD.
Expanding the first term on the right-hand side gives
P(X) = —VAz(X) = Az(VX) + Az((Z. X]).
Now usingProposition 3.4and the linearity ofd z,

D(X)=—L7A7(X) — Az(VX —[Z, X]) = —LzA7(X) — AZ(X).



358 M. Jerie, G.E. Prince/Journal of Geometry and Physics 43 (2002) 351-370

Notice that this proof relies (througbemma 3.9 on the resultPy o Lp Py = —@
of Proposition 3.1and that although it is not established hefg Az = —A% — @ is the
pullback of the global equatioBy o L Py = —®. Inthe geodesic ca$8] the propagation
equation forA z is found via the pullback of the global equation, except that in that paper
@ is replaced by the curvature of the linear connection. A similar method is ugéH in

The dual version offheorem 3.8s obtained by direct dualisation or by usihngmma
3.7

Corollary 3.9.
LAY = —AP — *.
The last part of the generalisation of the geometry of geodesic congruences to be presented
here is the extension of the Jacobi tensor concept describ8ddtion 2 (This topic is
not covered ir{7] and we refer the reader {8,10,15,16]for earlier appearances of this

generalisation.) For our purposes we do not distinguish the Jacobi (or linear variational)
equation from its classical adjoint by name.

Definition 3.10. Any tensor field/ onRR x M satisfying

V2]=—-doJ or V3J=—-d*cJ=—-Jod

is called aJacobi tensor

Proposition 3.11. Any tensor field J ofR x M satisfying
VJ=Az0J of VJ=A%0J

is a Jacobi tensar

Proof. We prove only the/J = A, o J part:

V2] =V(Az0J) = VAzoJ+AzoVJ]
= (=A% —d)oJ+ A% o J using Theorem B
= —dolJ
as required. O

The symmetries and the adjoint symmetrie€dfee[15]) are examples of Jacobi fields
satisfyingvVJ = Az o J andVJ = A}, o J, respectively.

4. A linear connection on E

In [8], Massa and Pagani introduced a linear connectioff by imposing some natural
requirements. If we denote their connection\ythese are that the covariant differentials
Vd:, VS, andV I are all zero and that the vertical sub-bundle is flat. They do, in fact,
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produce a shape map associated WithndI", although from a rather different perspective
than that of our study here.

Massa and Pagani's ideas have been acknowledged but not been widely adopted partly
because of a trend in the literature to work on a certain pullback bundlemvaie will
describe the work of Crampin et §2] in developing a linear connection in this context and
show that once the treatment of the nonautonomous case is freed from some misleading
features of the autonomous one, Massa and Pagani's connection coincides with a straight-
forward modification of that of Crampin et al. (Since we completed this part of the work,
Mestdag and Sarl¢®,14] have modified the connection of Crampin et[d].to one which
lifts to that of Massa and Pagani.)

There is also the matter of the utility of the whole pullback bundle approach given
Massa and Pagani's independence of it, however, we believe it has some computational and
conceptual advantages which we will attempt to utilise.

So now we introduce vector fields and foriaeng the prOJectloml E - Rx M.

We follow[16] Vector fields alongrl are sections of the pullback bunda‘@ (T(R x M))
overk. 36(:11) denotes th&€*°(E) module of such vector fields. Slmllarly\(nl) denotes
the graded algebra of scalar-valued forms almﬁgindV(n ) denotes the’\(nl) -module

of vector-valued forms alongf. Basic vector fields and-formsalong nf are elements

of X(R x M) andX*(R x M), respectively, identified with vector fields and forms along
nf by composition withnf. Using this device tensor fields along the projection can be
expressed as tensor products of basic vector fields and 1-forms with coeffici€fts i).

The canonical vector field alorﬁ is

a a

— a

u s
Jt dx4

and the natural bases fm(nl) and%*(nl) are then(T, (9/0x%)} and{dt, 6¢}. The set of
equivalence classes of vector fields aIrmfgnoduloT is denotec%(nl) sothatX e 36(71 )

satisfies d(X) = 0. Thenthe obvious bijection betweﬁm YyandV (E) provides avertical
lift from %(nf) to V(E), given in coordinates by

0
ou?

xV = x¢

0
— Xll _ aXO —_—,
( WX

whereX = X9(3/31) + X%(3/9x%).

On the matter of horizontal lifts we part company witls] and say that theorizontal lift
XHofX e %(nf) is given byX = X“H,. (There are many reasons for this: for example,
it is consistent with the horizontal lift of Crampin et ] and it respects the eigenvector
structure ofL S, for this reason it is also known as tkonghorizontal lift, se€[5].)
Finally, we carliftalong I" by X" := dr(X)I" forany X € X(z?) (sothafT’" = I"). Then
any vector fieldW € X(E) can be decomposed as

W=wWpr" + W+ wy)Y
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for unique W, e Sp(T}, Wy e X(xD) with Wy (t) = W(r) and Wy e X(x?). This
decomposition is the main aim of the lifting exercise. In coordinates,
d

axa’

Wr=dt(W)T, Wp = dt(W)% + d)c“(W)ai =dr(W)T + 6%(W)
xa

a d

Wy =¢%(W) Ixd

Thedynamical covariant derivativ€ and the Jacobi endomorphisgh, are then defined
as objects along the projection through the following commutation relatior& on

[r,xV1=-x%4+wvx)", [r,x" =) + o). (4.1)

In coordinatesp = @;(3/0x) ® 6> (we make no notational distinction between the
Jacobi endomorphism in this context and in that of the previous section). We extend
to act on forms by settiny/(F) := I'(F) for F < /\O(nf); then it can be shown that
V({X,a)) = (VX,a) + (X, Va) and soV can be extended to tensor fields almjbin the
usual wayVT = 0 and, in coordinates,

Vo = -rfe’,  vdr=0, V o Fabi.

dxa dxb
Massa and Pagaf8], Byrnes[1] and Crampin et a[2] have separately proposed various
linear connections of induced by an SODE'. They all use the dynamical covariant deriva-
tive V to determine derivativeslong I, but differ in the derivativesf I". This is essentially
equivalent to different choices of the torsion. Crampin ef3!firstly define a covariant
derivative alongrf and theninduce one dnby lifting. They are rather insistent that this pro-
cess produces amore natural and economical linear connection than the others, but as we will
see, there remains quite a deal of freedom even in defining the covariant derivative along the
projection. We will show that Massa and Pagani’s linear connectiafi isfinduced by one
along the projection which is quite transparent if natural proje@®prsPy and Py are used.
The covariant derivativeDy U, alongnf in [2] is defined for eacly € X(F) and

U € X(n?) as follows:

DyU =[Py (Y), UY]y + [Py(Y), UMy + Py (Y)(U, dN)T,

where’s andV’s correspond to the authors’ alternative splitting&) in which I” and
the horizontal distribution are lumped together. Takings a model we define a covariant
derivative D along the projection as follows.

Proposition 4.1. For eachY € X(E), U € X(z) and f € C®(E),

DyU =[Py (Y),U"ly +[Pr(¥), U"ly +[Py(Y), UMy + Y (U)T,
Dy(f):=Y(f)
is a covariant derivative

Proof. Since(Py(Y))y = (Pr(Y))y = (Py(Y))y = 0, itis clear thatDwU = fDyU.
Secondly, one has

Dy(fU) = fDyU + [Pu(Y)(f) + Pr(Y)(H)IUY, + Py (Y)(HHUL + U@ Y ()T,
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and sinceU“’, = U‘ZI = 04(U)(9/0x%) the right-hand side becomes
N d
fDyU + Y(f)9”(U)8x—a +U@Y (T

giving
Dy(fU) = fDyU + Y(f)U.

Proposition 4.2. The components d are as follows:
. A n P p 0
DrT =0, Dy, T=0, Dy T=0, =I)—
A0 ares 9 A0
Dy, — = —& , — =0.
Mgxa ™ ub axe Yo xa
Proof. SincePy(I') = Py(I') = 0,TY = 0andI'(T(t)) = I'(1) = 0 every term in

DT vanishes. Similarly, foDy, T and Dy, T. Otherwise

A0 _ ¢ e 0
DI"axa—[Fava]—(_Ha+FaVc)V—FaaxC7
PRI ory are o
Mo gya = H0 TV = Tua ) T T e axe

]

A d ore¢
Dvbﬁ :[Vb, Ha]H = (8,477 VC>H =0.

In fact, there is a simple relationship betwerand D, namely

DyU = DyU — U()(Py(Y))y.
We now useD to define a linear connectiovi on E (it is not an accident that we denote

Massa and Pagani’s derivative with the same symbol) in the manner of Crampifét al.

Proposition 4.3.
VyX = (DyXp)" + Dy X + DyXv)'.  Vy(f) =Y(f)
forall Y, X € X(E) and f € C*°(E) is a linear covariant derivative
O

Proof. Use the linearity of all the lifts and projections, and the fact thés a covariant

derivative.
This linear connection is identical to that of Massa and Pai@rds can be verified by
calculating the covariant differentials §f dr andI" along withVy, X or directly from the

ViVe =TV, Vi, I =0,

components below
Vil =0, VrH, = I'’Hy,
are . i . . .
Vu,Vp = a—bVC, Vy, I'=0, VyH,=0, VyV,=0.
u

= _ a
Vu, Hy = b H.,
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A key feature ofV for us is thatVxI" = 0 for all X € X(z9). It is also worth noting
the following important facts which follow frorRropositions 4.2 and 4&nd noting that
Dpr =V.

Corollary 4.4. LetX,Y € X(xD). Then

vrx¥ =wvx)Y, Vrxt = vx)H, Vyn X = (DyuX)H
Vyn XV = (DyuX)V, Vv XH = (Dyv X)H,
Vyv XY = (Dyv X))V, Vyn X = YHdr(x)I, Vv XTI = vV (de(x)T.

5. Theshapemap Ar

We now have evolution spade equipped with a linear connectionand torsion
T(X,Y):=VxY — VyX —[X, Y]. (5.1)
As a consequence dheorem 1.2ve immediately have, for any SODE:
Ax(Y) =VyX +T(X,Y) = VxY —[X, Y], (5.2)
and becaus®&x " = 0 for all X € X(E),
Ar(X) =T, X)=VrX — [T, X]. (5.3)

Note the similarity of this last expression to the equation in part (iipefinition 3.30f
V, although that definition was modelled on the conventional identity for zero torsion. We
exhibit an alternative, coordinate-free, expressionAfpt

Proposition 5.1.

Proof. The components ol are
Ap(I) =TI\ =0,  Ap(Hy) =T(I'. Hy) = —=®}Vj,
Ar(Vo) =T(I', V,) = H,,
so that relative to the usual bas$is, H,, V,}
Ar=—9{V,®6° + H, ® y°. (5.4)

It is easy to see thaPy o Ly Py = Pgo (LroPy — PyoLr) = PgolLpoPy.
Furthermore, sinc@y o L o Py is linear (overC*(E)) so isPy o L Py. It also follows
that Py o Ly Py(H,) = Py o L Py (I") = 0. Taking the horizontal part &q. (3.8)
Hy=—=Pu(LrVy) = —Pu(Lr(Pv(Va))) = =Py (Lr Py (Vy))
=—Pg o LrPy(Va).
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It follows that— Py o L Py is the type(1, 1) tensor field which is zero of{, andI" and
sendsV, to H,. Hence

Ar=—® —PyoLrPy=—PyoLrPy — PygolLrPy,
where in the last step we usBdoposition 3.10 replaced. O

We have the following immediate corollary (following frof.4)).

Corollary 5.2.
Ar(X)=-oXp)" + X)), (5.5)

Itis worth remarking the importance Bfjs. (5.3) and (5.5p relating the three operations
Lr,VrandAp, and also thaEq. (4.1)are equivalent to them

(r,xV1=vrxV — x4, [r, x" =vrx? +ox)".

Nowwe comparei - to Az. Tangentspaces®x M are spanned byZ, (3/9x%)}, therefore
the tangent spaces to the image of the sectigiiR x M), are spanned byI", X,} since
I'Z67,Z and we defines, := 07,(3/9x%). Now

d 9 azb a .

: ~p , 92
Fa = sy a =g T i g et \Ta t g ) W

so clearly vectors tangent to the image of the section will be annihilated hyahaihilating
forms

. aze
ACEY® — <Fb“ + )9’].

axb

The corresponding bases oy, (,) E and its dual are the(V", X, V,} and{dt, 64, A“}.
So we have

Ar=(A2)85, @6 + (—df — (A (A2)5) Ve @ 6°
—(A)iVa® A" + 3, ® A°, (5.6)

where we usedAz); = (1_‘,;1 + (82%/3x")), seeEq. (3.12) FurthermoreTheorem 3.8
tellsusVA; = LA, = —® — A%, hence this becomes

ArE(A2)82, ® 6% + (VAZLV, ®0° — (A2)iV, ® A® + 5, ® A”. (5.7)

Now we turn to the spectral analysis #f-. First of all it is clear fromEqgs. (5.4) and (5.5)
that tfA) = 0 and that the eigenvectoksbelonging to the zero eigenfunction af- lie
in Sp{I", H,} with @(X ) = 0. So we will suppose that K - (X) = AX thenPp(X) = 0.

Theorem 5.3. Suppose thak € X(E) with P (X) = 0andA € C*°(E). Then

Ar(X)=2X & &(Xpy) = 22Xy and Py (X) = APu(X).
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Pr oof.

Ar(X) =X & -oXn)" + X" =x@m" + X"
& —d(Xy)=Xy and Xy =ArXy
& @ (Xy)=-22Xy and Xy =AXg. O
In the Riemannian case tkeex n) matrix representation @, ®, is symmetric, but for an

arbitrary SODE this is not generally true. However, the cases whdras real eigenvalues
can be geometrically characterised.

Corollary 5.4. The eigenvalues @b are real if and only if the eigenvalues af- are real
pairs of opposite sign and/or pure imagingipairs of opposite sign

We now investigate those sectiomgs invariant underd . Notice that the restriction of
Ar to T, () E consists of the first two terms on the right-hand sid¢507), indicating that
V Az measures the failure of - to preserve these tangent spaces. (Explicithy(oz. X) =
07+ (Az(X))+(VAz)(X)".) Hences is invariant unded i~ (in the sense that the tangent
spaces to the image of the section are invariant subspadeg iffand only if VA, = 0.0On
the other hand, frortb.6), a directionoz, X tangent to the image of the section is invariant
underAr if and only if Az(X) = AX and®(X) = —22X for some local functiork on
R x M. As a consequence a secti@n is strictly invariant unded - if and only if Az is a
multiple of the identity at each point arll = —A2.

6. Jacobi fieldson E
6.1. The Raychaudhuri equation far-

In the geodesic cag8], Crampin and Prince work on the tangent buntilé of a dif-
ferentiable manifold with linear connection. There they find a propagation equation for
Az using the curvatur&; = R(-, Z)Z. However, in the present situation an attempt to use
curvature

R(X,Y)Z :=VxVyZ — VyVxZ — Vix.1|Z

to find a propagation equation far in the same way fails becaug& X, I')I" = 0. We
proceed by directly differentiating .

Lemma6.1.
VrAr(X) = VT (T, X).

Proof.

VrAr(X)=Vr(T(I', X)) — T(I', VrX)
={VpT (I, X)+ T(, VX)) = T (I, VrX) = (VT X). O
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Lemma6.2.
LrAr =VrAr.
Proof. Expand and usgg. (5.3)
(LrAPX)=Lr(Ar(X)) = Ar(LrX) =[I Ar(X)] = Ar(I", XD

=Vr(Ar(X)) — Ar(Ar(X)) — Ar(VrX — Ar(X))
=Vr(Ar(X)) — Ar(VrX) = VrAr(X). O

Recall thatttAy) = 0 sothatttL-Ar) = 0 and so a generalised Raychaudhuri equation
will be trivial, however, we can obtain a propagation equatiomfpralong ™ directly from

the above lemmas which we will call the generalised Raychaudhuri equatidn. fére
give it in two forms.

Theorem 6.3.
LrAr(X)=NrT)(T, X).
Equivalently
LrAr =—-Vro.

Proof. The first follows immediately from the lemmas. It follows fradnemma 6.2and
Proposition 5.%or its corollary that

LrAr =VrAp = -V, O
In coordinates,
LrAr = (IPof — Il — r(@9)V. @ 6°.

The generalised Jacobi equation deals with Lie-dragged vector fields along integral curves
of I'.
Theorem 6.4 (The Jacobi equation fov). Let X satisfyA(X) = VX (equivalently
[, X] =0).Then
V2X = (LrAr + AZ)(X). (6.1)

Pr oof.

VEX =Vr((Ar(X) = (VrAr)(X) + Ar(VrX)
= (LrAr)X) + Ar(Ar(X)) = (LrAr + A7) (X). o
We claimthakq. (6.1)is ageneralised geodesic deviation equation for an arbitrary SODE.

The following corollary shows that the horizontal componeriqf (6.1)is the generalised
Jacobi equation given if2] (and that the vertical component is tig- derivative of the
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horizontal one). This is the same as the generalisation givgéhOin First we need the
following lemma.

Lemma6.5. ForanyX € X(E)
[[X]=0« DrXr =0, DrXyp=Xy, DrXy=-®Xp).

Proof. Use [, X] = 0 & Ar(X) = Vi X, Proposition 4.3and(5.5). O

Corollary 6.6. Let X satisfy{I", X] = 0. Then the horizontal and vertical components of
(6.1)are, respectively

D2Xy =—-@o(Xy), D2Xy = —Dr(@(Xp)).

Proof. A straightforward application of the definition & from Proposition 4.3jives, for
arbitrary X,

Vr(VrX) = (D2Xr)" + (D2xp) + (D2 xy)Y.
Eq. (5.5)gives
AZ(X) = —(@Xp) —o(Xy)Y.
Applying Lemma 6.2(5.5)andLemma 6.5we have
(LrAr)(X)=(VrAr)(X) = Vr(Ar(X)) — Ar(VrX)
=Drx) —Dr@Xp))" — Ar(DrXm™) — Ar(DrXxy)Y)
=(DrXv)? —Dr@Xu)Y +@(DrXp)” — (Drxv)4
=-Dr@Xp)" +o(DrXy) = -Dr(@Xp)" +o(Xv)".

Combining these three expressiongig. (6.1)and equating horizontal and vertical parts
completes the proof. O

Remark 6.7.

1. The vertical component of our generalised Jacobi equation i® thderivative of the
horizontal one because, lhgmma 6.5

DfXpy=-9(Xy) = DrXy=-®Xn).
2. From the proof, for anyX € X(E),
(LrAr + ADX) =—o(Xm)" — (X)) = Dr@(Xu)" + (DrXm)"
=—oXm" —o(xXv)" — (Dro)Xm),
which should be compared with the resulfidfeorem 3.8

L7A7 —i—A% =,
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Appendix A. Tensor character of Az

Our analysis begins with a given SODE, and parameterisation. Hence for us the basic
geometrical object is, by construction, a product manifold—the graph space of the configu-
ration space of the system. Therefore, we consider an objectémberialif its coordinate
representation is unchanged under coordinate transformations which preserve the first fac-
tor of the graph spadk x M. The object of this section is to establish the tensor character
of Az.

We introduce new coordinatgs, £¢), indicated by an overhat, R x M such that
coordinate transformation respects the product structure of the graph space (i.e. preserves
projection onto th& factor). The new coordinates, £¢) depend ortt, x) by

f=t, £ =Xx" (A.1a)
with inverse
r=1, x? = X1, £b). (A.1b)
Change of coordinate bases&n< M are given by the following equations:
8 8 axb d 3 ax> 9
L L (A.22)
or 9f 9t axb axe  9x? gxb
N ox* . ox¢
dr =di, ¥ =2 di+ X dit, (A.2b)
ot axb

Change of basis formulae in the reverse direction are obtained by interchanging the roles of
the hatted and unhatted coordinates. We indicate components of tensor fields with respect
to the new coordinate bases in the obvious way. Taldnfpr example,

N ad A0
Z=dt(2)—=+ 7% —,
( )Bt + ox¢
~ ~a N R
whereZ4 = dx%(Z). On the other hand, we defife := dx? — Z¢ dr.
SinceZ(f) = Z(t) = 1 the transformatioA.1a) and (A.1bjpreserves the coordinate
representation of, i.e.

2=z L0y !
T ot axe ot axb’
A similar calculation shows
~a x4 _
6 =L gt (A.3)

T 9xb
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The coordinate transformatigqA.1a) and (A.1b)nduces a transformation of the adapted
coordinate chartz, x4, u) on E as follows:

f=t, £ = X4t xb), 4t = 0%, xb, u?) (A.43)
with inverse
t =1, x4 = X7, 5b), u® = U, zb, 4. (A.4b)

The transformation of coordinate baseskrs given by

d 9 axb 9 <32£b 32xP ) 3

o 9 ar asb \ a2 T oraxa™ ) 3ab
9  axb @ 3%xb 9%%v )\ 9 d aab 8 9xb @
=77 + u =7 = TR T Ao
axe  9x® 9xb dxadt = 9(x%)2 nb dud  Qud b 9x 9nd

0x? 0x4
dr =df, dx®=—df dx?,
= e ™

82xa 82xa azxa azxa 94
a_ (97X | 0X . B%x b " -
= ( 912 * atost" ) o + (a)gbaf + 3@};)2” ) dx” + Py da”. (A.5)

Again, changing bases in the reverse direction may be obtained from those above by inter-
changing the roles of the hatted and unhatted coordinates. Now, we have that

., 0xP N axb
u = -— u
at x4

We make the assumption that our SODE

a

9 3 3
F=_ a a
ar W T G

is tensorial so that thg?’s transform as accelerations, i.e.

. aZAa aZAa aZAa ) 9xd
FO=dat(I) = atxZ 2o by T by 2

orox0 " T ucaxt” oxb
GivenZ € X(R x M), we remind the reader thay : R x M — E is defined byrz(g) :=
(g, m0+Z(q)), whererg : Rx M - M andg e R x M. Letp € 6z(R x M), thenp =
(nf(p), no*Z(nf(p))). By definition the coordinate functiong' give the components of
a vector tangent t@/ relative to the coordinate badig/ox“}, clearlyu®(p) will give the
ath spatial component df, i.e.u®(p) = Z“(nf(p)), an equation which will hold in any
adapted coordinate chart containipgTherefore one may use, without fear of confusion,
the coordinate expression

af

aub uc=27¢

Vid (A.6)

(A7)

to mean evaluation is to take place on the image of the section.
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The pullback of the connection coefficients?, transform as follows.

LemmaA.l.
sa0x© 92%% ox® 9% . 0x¢0RY -,
b 9%k draxe  9xP 9xcoxe Azl 9xd "¢

Proof. UsingEqg. (A.6)

afe  axeafa axe( 3239 927 . 9x° afb>

= | — 2 —
oab — 9%b due 938 \“aroxe T “oxcaxe T oxb oue

Therefore, restricting to the image of the section one obtains

-a 13Aa 1 9x¢ 9234 9234 9xa 9fd
P 1A N (S P S S
20ub| . 20xb \ oroxe  9xcoxe x4 u® | u_za
na=2za
axe 9287 9x¢ 9%RT _ . 9x€ax¢ _,
=—— - = = r4 O
axb 9raxe  9xb 9xcaxe axb gxd ¢

The following theorem shows that given two (adapted) coordinate representations of
Az = o Py, the components of z

. z¢ ~a N . 82“ ~4
AZZ=T+F’ Azgzw—i—['b

transform in the right way from one coordinate picture to the other.

Theorem A.2. The coordinate expression fot; remains unchanged under change of
coordinategA.1a)and(A.1b), i.e. Az is tensorial so that if

P
Az =Az;§8xa ®0 =Az;§8£a ®0 ,
then
A 9x¢ gxb
Az = Az pe

Proof. For any type(1, 1) tensor fieldB, under change of coordinatés.1a) and (A.1b)

L 0% axbY 9
baxa dge ) axc

D

9 hb
By ®0" = <B

where we useétgs. (A.2a)—(A.3Jo change basis. Hence to prate is tensorial it remains
to show that

’

" axc axb
Az = Az e oae
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A~ A 2a A
Now, Aza = (82%/3xb) + I),. Consider the first teriZ¢ /3x”. UsingEq. (A.5),

VAR (@(2)) ax¢ 9\ (9% &)+ 03¢ | 4(z)
—_— = X =|—— X
axt  oxb 9%l dxc¢ at dxd
ax¢ 9 9% 3xe )\ 9xC [ a%k¢ %R _, 9% 9zd
=\t l\ 578 ) =\ et g4+ - -
X dx¢ ar  oxd 0xb \ 9xcar  odxcoxd dxd dxc
Combining this result and lemn{a.1a) and (A.1bpives

L 0Z%  ma 9x©09x99z%  9x€9R -, oxCax“ (074  _,
Az = - - ax Tl

axb b 93b 9xd gxc T 9xboaxd ¢ T 9xb gxd
9x¢ 0x¢
= 9%b oxd A28
as required. O
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