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Abstract

We discuss generalisations of Jacobi fields and Raychaudhuri’s equation from the geodesic case
to that of an arbitrary system of second-order ODEs. Our results are obtained using a natural choice
of linear connection on evolution space.
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1. Introduction

In this work, we aim to generalise parts of the geometry of geodesics on a Riemannian
manifold with linear connection to the solutions of an arbitrary system of second-order ordi-
nary differential equations. In particular, we give a generalisation of the geodesic deviation
equation, and Raychaudhuri’s equation.

We represent a system of equations

ẍa = f a(t, x, ẋ)

on a configuration manifoldM by a vector fieldΓ (called a second-order differential equa-
tion field or SODE) on theevolution spaceE := R×TM. Our generalisation then uses two
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constructions fromΓ , both onE: firstly a linear connection (with torsion),̂∇, and secondly
a type(1,1) tensor field,AΓ , which describes the deformation of the tangent spaces ofE

due to the flow generated byΓ . This second object can be defined on any differentiable
manifoldN with linear connection∇, associated torsionT and local vector fieldZ. De-
noting parallel transport using∇ onN by τt and denoting the flow generated byZ by ζt ,
we have the following definition.

Definition 1.1.

AZ(ξ) := d

dt

∣∣∣∣
t=0
τ−1
t (ζt∗ξ), where ξ ∈ TxN.

Maps defined in this way are examples of what we will callshape maps: as we will see it is
not always necessary to have a linear connection in order to define such maps. The simplest
possible case is that ofR

2 with the Euclidean metric and flat connection: the corresponding
map can be used in the geometric analysis of planar flows (see[13]).

Theorem 1.2.

AZ(ξ) = ∇ξZ + T (Zx, ξ), ξ ∈ TxN.

Proof. LetX be the field obtained by Lie draggingξ along the integral curve ofZ through
x. Then

AZ(ξ)= d

dt

∣∣∣∣
t=0
(τ−1
t Xζt (x)) = (∇ZX)x = (∇XZ)x + T (Z,X)x + (LZX)x

= ∇ξZ + T (Zx, ξ),
where we have usedT (X, Y ) = ∇XY − ∇YX − [X, Y ] andLZX = 0. �

When the connection is symmetricAZ is just∇Z, the covariant differential ofZ. The
generalised Raychaudhuri equation is obtained by assumingZ is geodesic with respect to
∇ and taking the trace ofLZAZ. Vector fields satisfyingAZX = ∇ZX along a geodesic
fieldZ can be shown to satisfy a generalised Jacobi’s equation. We will elaborate on these
ideas and apply them tô∇ andAΓ .

The present paper is a development of two earlier ones. In[3], Crampin and Prince
discussed the conventional case of the Levi-Civita connection and related Raychaudhuri’s
equation on the configuration spaceM to a universal equation onTM involving the geodesic
sprayΓ . They introduced the mapAZ onTM but they did not, however, introduce a linear
connection or a mapAΓ . In a second paper[7], Jerie and Prince generalised the results of
Crampin and Prince[3] to an arbitrary system of second-order ODEs by introducing a map
AZ (this time onT (R×M)) in the absence of a linear connection. We demonstrated that our
generalised Raychaudhuri equation does describe caustics and singularities of congruences
of solution curves in an exactly analogous manner to its traditional counterpart, so effectively
used in general relativity (see, for example, the books[6,17]). In the current paper, we give an
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alternative derivation of the generalised Raychaudhuri equation onR×M and revisit the Ja-
cobi field idea, but most importantly we introduce a linear connection,∇̂ and the mapAΓ on
E, develop both Raychaudhuri and Jacobi equations onE and relate these to our earlier work.

This paper is set out as follows. InSection 2we give a brief account of the Riemannian
setting. InSection 3we introduce evolution spaceE, and show how the ideas ofSection 2
apply to the solutions of an arbitrary system of SODE. InSection 4we describe a linear
connection∇̂ onE, and inSection 5we show howAΓ and the linear connection combine
to give a more satisfactory global version of the SODE case treated inSection 3. Section 6
discusses the Raychaudhuri and Jacobi equations associated withAΓ . Appendix Adeals
with the tensorial character ofAZ.

2. The Riemannian setting: Raychaudhuri’s equation and Jacobi tensors

For the sake of completeness we very briefly describe the relevant parts of Crampin
and Prince[3] (our first paper[7] gives a more self-contained account). The setting is an
n-dimensional smooth manifoldM equipped with a metricg and its symmetric, linear
connection∇. Define a type(1,1) tensor fieldAZ associated with a local vector fieldZ on
M by comparing Lie transport with parallel transport:

AZ := d

dt

∣∣∣∣
t=0
τ−1
t ◦ ζt∗. (2.1)

Hereζt is the flow generated byZ, andτt the parallel transport map alongζt . The trace of
AZ is a measure of the divergence ofζt . Raychaudhuri’s equation describes the evolution
of this trace along the flow whenZ is geodesic. For anyξ tangent toM it is simple to show
thatAZ(ξ) = ∇ξZ, and ifZ is geodesic (more correctly auto-parallel) then the propagation
equation forAZ alongZ is

LZAZ = ∇ZAZ = −RZ − A2
Z, (2.2)

whereRZ is the type(1,1) tensor field obtained from the Riemann curvature, Riemann, of
the connection by

RZ(X) := Riemann(X,Z)Z.

Since the operations of taking the trace and Lie differentiation commute, the trace ofEq. (2.2)
is Raychaudhuri’s equation.

The propagationequation (2.2)is also the key to a simple derivation of the Jacobi equation
and its extension to tensor fields. Any Lie-dragged vector fieldX along an integral curveζ
of Z satisfies∇ζ̇ X = AZ(X) and one immediately has

∇2
ζ̇
X = (∇ZAZ)(X)+ A2

Z(X) = −RZ(X).
Similarly, any tensor fieldJ alongζ with ∇ζ̇ J = AZ ◦ J satisfies the Jacobi tensor field
equation

∇2
ζ̇
J + RZ ◦ J = 0.



354 M. Jerie, G.E. Prince / Journal of Geometry and Physics 43 (2002) 351–370

3. The SODE setting: Raychaudhuri’s equation and Jacobi tensors

In what follows, we will be analysing a system of second-order differential equations

ẍa = f a(t, x, ẋ) (3.1)

on a manifoldM with local coordinates(xa) and with associated bundlesπ : R×M → M,
t : R ×M → R andπ0

1 : E → R ×M. The geodesic equations are, of course, a special
example and one might expect the analysis to be modelled on that situation. However, we
take the position that even the autonomous case is best described onextended configuration
spaceR ×M and evolution spaceE := R × TM and that one should put aside the fact
that historically autonomous systems were discussed onM and its tangent and cotangent
bundles. While the paper[3] did not use this more general setting, we refer the reader to
the papers[11,12]for a fully nonautonomous treatment of the geodesic case (in the context
of projective differential geometry). The papers[4,7] are basic references for the material
in this section.

From(3.1)we construct onE (with local, adapted coordinates(t, xa, ua)) an SODE:

Γ = ∂

∂t
+ ua ∂

∂xa
+ f a ∂

∂ua
, (3.2)

whose integral curves are the 1-jets of the solution curves of the given equations.
The vertical and contact structures of the bundleπ0

1 : E → R×M are combined inS, an
intrinsic (1,1) tensor field onE and known as thevertical endomorphism. In coordinates:

S = Va ⊗ θa, (3.3)

whereVa := ∂/∂ua are the vertical basis fields andθa := dxa − ua dt are the local contact
forms. From the first-order deformation,LΓ S, a nonlinear connectionis constructed as
follows:LΓ S has eigenvalues 0,1,−1 with corresponding eigenspaces spanned locally by
Γ , then verticalfieldsVa andn horizontalfields

Ha := ∂

∂xa
− Γ ba

∂

∂ua
, where Γ ba := −1

2

∂f a

∂ub
, (3.4)

respectively.
The vector fields{Γ,Ha, Va} form a local basis onE, with dual basis{dt, θa, ψa}, where

ψa := dua − f a dt + Γ ab θb.
TheΓ ba form the components of the nonlinear connection thus induced byΓ . The resulting
direct sum decomposition ofT (E) is IE = PΓ + PH + PV , whereIE is the identity type
(1,1) tensor field onE, andPΓ , PH andPV are the three projection operators given in
coordinates by

PΓ = Γ ⊗ dt, PH = Ha ⊗ θa, PV = Va ⊗ ψa. (3.5)

(In our earlier paper, we usedN,P andQ for these projectors: we have changed our notation
for the purpose of comparison in the next section with[2].) The components of the Jacobi
endomorphism,Φ := PV ◦ LΓ PH , a type(1,1) tensor field onE, can be calculated from

[Γ,Ha ] = Γ ba Hb +ΦbaVb, (3.6)
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giving

Φ = ΦbaVb ⊗ θa = (Bba − Γ bc Γ ca − Γ (Γ ba ))Vb ⊗ θa, (3.7)

whereBba := −(∂f b/∂xa). Other useful results:

[Γ, Va ] = −Ha + Γ ba Vb, [Ha,Hb] = RdabVd, (3.8)

this second fact is effectively the definition of the curvature,R, of the nonlinear connection
Γ ba .

In [4], vertical and horizontal lifts toE of vector fields onR×M are intrinsically defined;
here it suffices to give their coordinate descriptions. GivenX ∈ X(R ×M) with coordinate
representationX = X0(∂/∂t)+Xa(∂/∂xa) then

XV = (Xa − uaX0)Va, XH = (Xa − uaX0)Ha.

This means, for example, that for any vertical vectorµ ∈ Tq(E) there exists a unique vector
η ∈ Tπ0

1 (q)
(R ×M) with dt (η) = 0 such thatηV = µ.

The following simple but important result is obtained usingΦ := PV ◦ LΓ PH and
IE = PΓ + PH + PV .

Proposition 3.1.

PV ◦ LΓ PV = −Φ. (3.9)

In order to arrive at a generalised Raychaudhuri equation for SODEs we need to introduce
an arbitrary congruence of (graphs) of solution curves of(3.1). We follow [7]: assume the
existence of such a congruence with corresponding local tangent fieldZ ∈ X(R × M).
Then, for local functionsZa onR ×M, we can write

Z = ∂

∂t
+ Za ∂

∂xa
.

The relation betweenZ and(3.1) is given by

Z(Za) = f a(t, xb, Zb).

Z defines a local section,σZ, of π0
1 : E → R ×M by

σZ(p) := (p, π∗Zp).

We will use an overline to indicate the restriction inE to the image of the section. At the
risk of a mild ambiguity we will also use an overline to denote the pullback by the section,
so that, for example,̄θa := dxa −Za dt denotes both the restriction and the pullback of the
contact forms. We will also use the symbols

∗= and
∗

:= for section equality and definition
on the section, respectively. Then the fact thatZ is tangent to graphs of solution curves of
(3.1) is expressed as̄f a = Z(Za) (as already noted) and toΓ

∗=σZ∗(Z).
As we explained in[7] we can still define a mapAZ even though we do not have a linear

connection onM. We do this by using the result thatAZ = σ ∗
ZPV in the geodesic case. We

give a brief summary. PullPV back fromE to R×M using the section: letξ ∈ Tp(R×M),
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thenPV (σZ∗ξ) is vertical, and hence there is a unique vectorη ∈ Tp(R ×M) such that
dt (η) = 0 andηV = PV (σZ∗ξ). We denote the linear mapξ �→ η by σ ∗

ZPV , hence

(σ ∗
ZPV (ξ))

V = PV (σZ∗ξ), dt (σ ∗
ZPV ) = 0. (3.10)

This can be done for any vertical(1,1) tensor fieldB onE (vertical means thatPV ◦B = B)
to giveσ ∗

ZB, see[7]. In particular,Φ := PV ◦ LΓ PH is vertical and we will denoteσ ∗
ZΦ

by Φ̄ and its dual action on forms bȳΦ∗.

Definition 3.2. We define the type(1,1) tensor fieldAZ onR ×M associated withZ by

AZ := σ ∗
ZPV . (3.11)

We denote the dual action on 1-forms byA∗
Z, so thatA∗

Z(ω) := ω ◦ AZ.

In coordinates

AZ =
(
∂Za

∂xb
+ Γ̄ ab

)
∂

∂xa
⊗ θ̄ b. (3.12)

In [7], we show that

LZAZ = −A2
Z − Φ̄. (3.13)

The trace of this equation is the generalisation of Raychaudhuri’s equation. Importantly, we
showed thatEq. (3.13)is the pullback byσZ of Eq. (3.9), this latter equation being a sort
of universal evolution equation describing all congruences of graphs of solution curves.

The next object to be generalised, at least in part, is the covariant derivative itself. This
derivative is used in[7] to prove that the zeros of(trace(AZ))−1 determine congruence
collapse.

Definition 3.3. We define a covariant derivative-like operator∇̄ which acts only alongZ
to be the linear operator with the properties:

(i) ∇̄(f ) := Z(f ) for all f ∈ C∞(R ×M),
(ii) ∇̄(X) := [Z,X] + AZ(X) for all X ∈ X(R ×M),

(iii) (∇̄ω)(X) := ∇̄(ω(X))− ω(∇̄X) for all ω ∈ X∗(R ×M),
(iv) ∇̄ acts by the Leibniz rule on tensor and wedge products and commutes with tensor

contractions.

We remark that part (iii) of the definition means that on 1-forms∇̄ = LZ − A∗
Z.

In our earlier paper, we did not usē∇ or (3.9) in establishingEq. (3.13)but with their
help a much cleaner proof can be achieved which we now present.

Proposition 3.4. ∇̄AZ = LZAZ and∇̄A∗
Z = LZA∗

Z.

Proof. Recall from the definition that, acting on vector fields, one has∇̄ = LZ+AZ. Then

∇̄AZ = ∇̄ ◦ AZ − AZ ◦ ∇̄ = (LZ + AZ) ◦ AZ − AZ ◦ (LZ + AZ)
=LZ ◦ AZ − AZ ◦ LZ = LZAZ.
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The same result holds for the action ofA∗
Z on 1-forms. �

The following result could serve as part of an alternative definition of∇̄.

Lemma 3.5. LetX ∈ X(R ×M) such thatdt (X) = 0, i.e.X = Xa(∂/∂xa), then

(∇̄X)V = PV (LΓ (X
V )).

Proof. A straightforward coordinate calculation suffices. �

Lemma 3.6. LetX ∈ X(R ×M). Then

Φ̄(X) = −∇̄(AZ(X))+ AZ([Z,X]).

Proof. By definitionΦ̄ := σ ∗
ZΦ, henceΦ̄(X)V = Φ(σZ∗X). Therefore, usingProposition

3.1,

Φ̄(X)V = −PV ◦ LΓ PV (σZ∗X) = −PV (LΓ (AZX)V )+ PV (σZ∗(LZX))
= −(∇̄(AZX))V + AZ([Z,X])V ,

where we have also usedLemma 3.5in the last step. Hence

Φ̄(X) = −∇̄(AZ(X))+ AZ([Z,X]). �

Lemma 3.7.

Φ̄∗ = −∇̄ ◦ A∗
Z + A∗

Z ◦ LZ − 2A∗2
Z .

Proof. This follows from a straightforward dualisation of the result ofLemma 3.6. �

We can now give an alternative and intrinsic proof of the following theorem.

Theorem 3.8.

LZAZ = −A2
Z − Φ̄.

Proof. FromLemma 3.6

Φ̄(X) = −∇̄(AZ(X))+ AZ([Z,X]).

Expanding the first term on the right-hand side gives

Φ̄(X) = −∇̄AZ(X)− AZ(∇̄X)+ AZ([Z,X]).

Now usingProposition 3.4and the linearity ofAZ,

Φ̄(X) = −LZAZ(X)− AZ(∇̄X − [Z,X]) = −LZAZ(X)− A2
Z(X). �
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Notice that this proof relies (throughLemma 3.6) on the resultPV ◦ LΓ PV = −Φ
of Proposition 3.1, and that although it is not established here,LZAZ = −A2

Z − Φ̄ is the
pullback of the global equationPV ◦LΓ PV = −Φ. In the geodesic case[3] the propagation
equation forAZ is found via the pullback of the global equation, except that in that paper
Φ is replaced by the curvature of the linear connection. A similar method is used in[7].

The dual version ofTheorem 3.8is obtained by direct dualisation or by usingLemma
3.7.

Corollary 3.9.

LZA
∗
Z = −A∗2

Z − Φ̄∗.

The last part of the generalisation of the geometry of geodesic congruences to be presented
here is the extension of the Jacobi tensor concept described inSection 2. (This topic is
not covered in[7] and we refer the reader to[2,10,15,16]for earlier appearances of this
generalisation.) For our purposes we do not distinguish the Jacobi (or linear variational)
equation from its classical adjoint by name.

Definition 3.10. Any tensor fieldJ onR ×M satisfying

∇̄2J = −Φ̄ ◦ J or ∇̄2J = −Φ̄∗ ◦ J = −J ◦ Φ̄
is called aJacobi tensor.

Proposition 3.11. Any tensor field J onR ×M satisfying

∇̄J = AZ ◦ J or ∇̄J = A∗
Z ◦ J

is a Jacobi tensor.

Proof. We prove only thē∇J = AZ ◦ J part:

∇̄2J = ∇̄(AZ ◦ J ) = ∇̄AZ ◦ J + AZ ◦ ∇̄J
= (−A2

Z − Φ̄) ◦ J + A2
Z ◦ J using Theorem 3.8

= −Φ̄ ◦ J
as required. �

The symmetries and the adjoint symmetries ofZ (see[15]) are examples of Jacobi fields
satisfying∇̄J = AZ ◦ J and∇̄J = A∗

Z ◦ J , respectively.

4. A linear connection on E

In [8], Massa and Pagani introduced a linear connection onE by imposing some natural
requirements. If we denote their connection by∇̂, these are that the covariant differentials
∇̂ dt , ∇̂S, and∇̂Γ are all zero and that the vertical sub-bundle is flat. They do, in fact,
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produce a shape map associated with∇̂ andΓ , although from a rather different perspective
than that of our study here.

Massa and Pagani’s ideas have been acknowledged but not been widely adopted partly
because of a trend in the literature to work on a certain pullback bundle overE. We will
describe the work of Crampin et al.[2] in developing a linear connection in this context and
show that once the treatment of the nonautonomous case is freed from some misleading
features of the autonomous one, Massa and Pagani’s connection coincides with a straight-
forward modification of that of Crampin et al. (Since we completed this part of the work,
Mestdag and Sarlet[9,14] have modified the connection of Crampin et al.[2] to one which
lifts to that of Massa and Pagani.)

There is also the matter of the utility of the whole pullback bundle approach given
Massa and Pagani’s independence of it, however, we believe it has some computational and
conceptual advantages which we will attempt to utilise.

So now we introduce vector fields and formsalong the projectionπ0
1 : E → R ×M.

We follow [16]. Vector fields alongπ0
1 are sections of the pullback bundleπ0∗

1 (T (R ×M))
overE.X(π0

1) denotes theC∞(E)module of such vector fields. Similarly,
∧
(π0

1) denotes
the graded algebra of scalar-valued forms alongπ0

1 andV (π0
1 ) denotes the

∧
(π0

1 )-module
of vector-valued forms alongπ0

1 . Basic vector fields and1-formsalongπ0
1 are elements

of X(R ×M) andX∗(R ×M), respectively, identified with vector fields and forms along
π0

1 by composition withπ0
1 . Using this device tensor fields along the projection can be

expressed as tensor products of basic vector fields and 1-forms with coefficients inC∞(E).
The canonical vector field alongπ0

1 is

T = ∂

∂t
+ ua ∂

∂xa
,

and the natural bases forX(π0
1) andX∗(π0

1 ) are then{T, (∂/∂xa)} and{dt, θa}. The set of

equivalence classes of vector fields alongπ0
1 moduloT is denotedX(π0

1 ) so thatX̄ ∈ X(π0
1 )

satisfies dt (X̄) = 0. Then the obvious bijection betweenX(π0
1 )andV (E)provides avertical

lift fromX(π0
1 ) to V (E), given in coordinates by

XV = X̄a
∂

∂ua
= (Xa − uaX0)

∂

∂ua
,

whereX = X0(∂/∂t)+Xa(∂/∂xa).
On the matter of horizontal lifts we part company with[16] and say that thehorizontal lift

XH ofX ∈ X(π0
1 ) is given byXH = X̄aHa . (There are many reasons for this: for example,

it is consistent with the horizontal lift of Crampin et al.[4] and it respects the eigenvector
structure ofLΓ S, for this reason it is also known as thestronghorizontal lift, see[5].)
Finally, we canlift alongΓ byXΓ := dt (X)Γ for anyX ∈ X(π0

1 ) (so thatTΓ = Γ ). Then
any vector fieldW ∈ X(E) can be decomposed as

W = (WΓ )
Γ + (WH )H + (WV )V
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for uniqueWΓ ∈ Sp{T}, WH ∈ X(π0
1 ) with WH(t) = W(t) andWV ∈ X(π0

1). This
decomposition is the main aim of the lifting exercise. In coordinates,

WΓ = dt (W)T, WH = dt (W)
∂

∂t
+ dxa(W)

∂

∂xa
= dt (W)T + θa(W) ∂

∂xa
,

WV =ψa(W) ∂
∂xa

.

Thedynamical covariant derivative∇ and the Jacobi endomorphism,Φ, are then defined
as objects along the projection through the following commutation relations onE:

[Γ,XV ] = −XH + (∇X)V , [Γ,XH ] = (∇X)H +Φ(X)V . (4.1)

In coordinatesΦ = Φab (∂/∂x
a) ⊗ θb (we make no notational distinction between the

Jacobi endomorphism in this context and in that of the previous section). We extend∇
to act on forms by setting∇(F ) := Γ (F) for F ∈ ∧0

(π0
1 ); then it can be shown that

∇(〈X,α〉) = 〈∇X,α〉 + 〈X,∇α〉 and so∇ can be extended to tensor fields alongπ0
1 in the

usual way.∇T = 0 and, in coordinates,

∇θa = −Γ ab θb, ∇ dt = 0, ∇ ∂

∂xa
= Γ ba

∂

∂xb
.

Massa and Pagani[8], Byrnes[1] and Crampin et al.[2] have separately proposed various
linear connections onE induced by an SODEΓ . They all use the dynamical covariant deriva-
tive∇ to determine derivativesalongΓ , but differ in the derivativesofΓ . This is essentially
equivalent to different choices of the torsion. Crampin et al.[2] firstly define a covariant
derivative alongπ0

1 and then induce one onE by lifting. They are rather insistent that this pro-
cess produces a more natural and economical linear connection than the others, but as we will
see, there remains quite a deal of freedom even in defining the covariant derivative along the
projection. We will show that Massa and Pagani’s linear connection onE is induced by one
along the projection which is quite transparent if natural projectorsPΓ ,PH andPV are used.

The covariant derivative,DYU , alongπ0
1 in [2] is defined for eachY ∈ X(E) and

U ∈ X(π0
1) as follows:

DYU := [PH(Y ), UV ]V + [PV (Y ), UH]H + PH(Y )〈U,dt〉T,
whereH’s andV ’s correspond to the authors’ alternative splitting ofX(E) in whichΓ and
the horizontal distribution are lumped together. TakingD as a model we define a covariant
derivativeD̂ along the projection as follows.

Proposition 4.1. For eachY ∈ X(E), U ∈ X(π0
1 ) andf ∈ C∞(E),

D̂YU := [PH (Y ), U
V ]V + [PΓ (Y ), U

V ]V + [PV (Y ), U
H ]H + Y (U(t))T,

D̂Y (f ) := Y (f )
is a covariant derivative.

Proof. Since(PH (Y ))V = (PΓ (Y ))V = (PV (Y ))H = 0, it is clear thatD̂fYU = f D̂YU .
Secondly, one has

D̂Y (fU) = f D̂YU + [PH (Y )(f )+ PΓ (Y )(f )]UVV + PV (Y )(f )UHH + U(t)Y (f )T,



M. Jerie, G.E. Prince / Journal of Geometry and Physics 43 (2002) 351–370 361

and sinceUVV = UHH = θa(U)(∂/∂xa) the right-hand side becomes

f D̂YU + Y (f )θa(U) ∂
∂xa

+ U(t)Y (f )T

giving

D̂Y (fU) = f D̂YU + Y (f )U. �

Proposition 4.2. The components of̂D are as follows:

D̂Γ T = 0, D̂HaT = 0, D̂VaT = 0, D̂Γ
∂

∂xa
= Γ ba

∂

∂xb
,

D̂Hb
∂

∂xa
= ∂Γ ca

∂ub

∂

∂xc
, D̂Vb

∂

∂xa
= 0.

Proof. SincePH (Γ ) = PV (Γ ) = 0, TV = 0 andΓ (T(t)) = Γ (1) = 0 every term in
D̂Γ T vanishes. Similarly, forD̂HaT andD̂VaT. Otherwise

D̂Γ
∂

∂xa
= [Γ, Va ] = (−Ha + Γ ca Vc)V = Γ ca

∂

∂xc
,

D̂Hb
∂

∂xa
= [Hb, Va ]V =

(
−∂Γ

c
b

∂ua
Vc

)
V

= −∂Γ
c
b

∂ua

∂

∂xc
,

D̂Vb
∂

∂xa
= [Vb,Ha ]H =

(
∂Γ ca

∂ub
Vc

)
H

= 0. �

In fact, there is a simple relationship betweenD andD̂, namely

D̂YU = DYU − U(t)(PV (Y ))V .
We now useD̂ to define a linear connection̂∇ onE (it is not an accident that we denote
Massa and Pagani’s derivative with the same symbol) in the manner of Crampin et al.[2].

Proposition 4.3.

∇̂YX := (D̂YXΓ )
Γ + (D̂YXH )H + (D̂YXV )V , ∇̂Y (f ) := Y (f )

for all Y,X ∈ X(E) andf ∈ C∞(E) is a linear covariant derivative.

Proof. Use the linearity of all the lifts and projections, and the fact thatD̂ is a covariant
derivative. �

This linear connection is identical to that of Massa and Pagani[8] as can be verified by
calculating the covariant differentials ofS, dt andΓ along with∇̂VaX or directly from the
components below

∇̂Γ Γ = 0, ∇̂Γ Ha = Γ ba Hb, ∇̂Γ Va = Γ ba Vb, ∇̂HaΓ = 0,

∇̂HaHb = ∂Γ ca

∂ub
Hc, ∇̂HaVb = ∂Γ ca

∂ub
Vc, ∇̂VaΓ = 0, ∇̂VaHb = 0, ∇̂VaVb = 0.
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A key feature of∇̂ for us is that∇̂XΓ = 0 for all X ∈ X(π0
1 ). It is also worth noting

the following important facts which follow fromPropositions 4.2 and 4.3and noting that
D̂Γ = ∇.

Corollary 4.4. LetX, Y ∈ X(π0
1 ). Then

∇̂Γ XV = (∇X)V , ∇̂Γ XH = (∇X)H , ∇̂YHXH = (D̂YHX)
H ,

∇̂YHXV = (D̂YHX)
V , ∇̂YV XH = (D̂YV X)

H ,

∇̂YV XV = (D̂YV X)
V , ∇̂YHXΓ = YH (dt (X))Γ, ∇̂YV XΓ = YV (dt (X))Γ.

5. The shape map AΓ

We now have evolution spaceE equipped with a linear connection̂∇ and torsion

T̂ (X, Y ) := ∇̂XY − ∇̂YX − [X, Y ]. (5.1)

As a consequence ofTheorem 1.2we immediately have, for any SODE:

AX(Y ) = ∇̂YX + T̂ (X, Y ) = ∇̂XY − [X, Y ], (5.2)

and becausê∇XΓ = 0 for allX ∈ X(E),
AΓ (X) = T̂ (Γ,X) = ∇̂Γ X − [Γ,X]. (5.3)

Note the similarity of this last expression to the equation in part (ii) ofDefinition 3.3of
∇̄, although that definition was modelled on the conventional identity for zero torsion. We
exhibit an alternative, coordinate-free, expression forAΓ .

Proposition 5.1.

AΓ = −PV ◦ LΓ PH − PH ◦ LΓ PV .

Proof. The components ofAΓ are

AΓ (Γ ) = T̂ (Γ, Γ ) = 0, AΓ (Ha) = T̂ (Γ,Ha) = −ΦbaVb,
AΓ (Va) = T̂ (Γ, Va) = Ha,

so that relative to the usual basis{Γ,Ha, Va}
AΓ = −ΦabVa ⊗ θb +Ha ⊗ ψa. (5.4)

It is easy to see thatPH ◦ LΓ PV = PH ◦ (LΓ ◦ PV − PV ◦ LΓ ) = PH ◦ LΓ ◦ PV .
Furthermore, sincePH ◦LΓ ◦PV is linear (overC∞(E)) so isPH ◦LΓ PV . It also follows
thatPH ◦ LΓ PV (Ha) = PH ◦ LΓ PV (Γ ) = 0. Taking the horizontal part ofEq. (3.8)

Ha = −PH (LΓ Va) = −PH (LΓ (PV (Va))) = −PH (LΓ PV (Va))
= −PH ◦ LΓ PV (Va).
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It follows that−PH ◦ LΓ PV is the type(1,1) tensor field which is zero onHa andΓ and
sendsVa toHa . Hence

AΓ = −Φ − PH ◦ LΓ PV = −PV ◦ LΓ PH − PH ◦ LΓ PV ,
where in the last step we usedProposition 3.1to replaceΦ. �

We have the following immediate corollary (following from(5.4)).

Corollary 5.2.

AΓ (X) = −Φ(XH)V + (XV )H . (5.5)

It is worth remarking the importance ofEqs. (5.3) and (5.5)in relating the three operations
LΓ , ∇̂Γ andAΓ , and also thatEq. (4.1)are equivalent to them

[Γ,XV ] = ∇̂Γ XV −XH, [Γ,XH ] = ∇̂Γ XH +Φ(X)V .
Now we compareAΓ toAZ. Tangent spaces toR×M are spanned by{Z, (∂/∂xa)}, therefore
the tangent spaces to the image of the section,σZ(R ×M), are spanned by{Γ,Σa} since
Γ

∗=σZ∗Z and we defineΣa := σZ∗(∂/∂xa). Now

Σa := σZ∗
∂

∂xa
∗= ∂

∂xa
+ ∂Zb

∂xa

∂

∂ub
∗=Ha +

(
Γ̄ ba + ∂Zb

∂xa

)
Vb,

so clearly vectors tangent to the image of the section will be annihilated by then-annihilating
forms

Λa
∗

:=ψa −
(
Γ̄ ab + ∂Za

∂xb

)
θb.

The corresponding bases forTσZ(p)E and its dual are then{Γ,Σa, Va} and{dt, θa,Λa}.
So we have

AΓ
∗= (AZ)abΣa ⊗ θb + (−Φ̄ab − (AZ)ac (AZ)cb)Va ⊗ θb

− (AZ)abVa ⊗Λb +Σa ⊗Λa, (5.6)

where we used(AZ)ab = (Γ̄ ab + (∂Za/∂xb)), seeEq. (3.12). Furthermore,Theorem 3.8
tells us∇̄AZ = LZAZ = −Φ̄ − A2

Z, hence this becomes

AΓ
∗=(AZ)abΣa ⊗ θb + (∇̄AZ)abVa ⊗ θb − (AZ)abVa ⊗Λb +Σa ⊗Λa. (5.7)

Now we turn to the spectral analysis ofAΓ . First of all it is clear fromEqs. (5.4) and (5.5)
that tr(AΓ ) = 0 and that the eigenvectorsX belonging to the zero eigenfunction ofAΓ lie
in Sp{Γ,Ha} withΦ(XH) = 0. So we will suppose that ifAΓ (X) = λX thenPΓ (X) = 0.

Theorem 5.3. Suppose thatX ∈ X(E) with PΓ (X) = 0 andλ ∈ C∞(E). Then

AΓ (X) = λX ⇔ Φ(XH) = −λ2XH and PV (X) = λPH (X).
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Proof.

AΓ (X) = λX⇔ −Φ(XH)V + (XV )H = λ((XH )
H + (XV )V )

⇔ −Φ(XH) = XV and XV = λXH

⇔Φ(XH) = −λ2XH and XV = λXH . �

In the Riemannian case the(n×n)matrix representation ofΦ,�, is symmetric, but for an
arbitrary SODE this is not generally true. However, the cases where� has real eigenvalues
can be geometrically characterised.

Corollary 5.4. The eigenvalues of� are real if and only if the eigenvalues ofAΓ are real
pairs of opposite sign and/or pure imaginary(pairs of opposite sign).

We now investigate those sectionsσZ invariant underAΓ . Notice that the restriction of
AΓ to Tσz(p)E consists of the first two terms on the right-hand side of(5.7), indicating that
∇̄AZ measures the failure ofAΓ to preserve these tangent spaces. (ExplicitlyAΓ (σZ∗X) =
σZ∗(AZ(X))+ (∇̄AZ)(X)V .) HenceσZ is invariant underAΓ (in the sense that the tangent
spaces to the image of the section are invariant subspaces ofAΓ ) if and only if ∇̄AZ = 0. On
the other hand, from(5.6), a directionσZ∗X tangent to the image of the section is invariant
underAΓ if and only if AZ(X) = λX andΦ̄(X) = −λ2X for some local functionλ on
R ×M. As a consequence a sectionσZ is strictly invariant underAΓ if and only ifAZ is a
multiple of the identity at each point and̄Φ = −A2

Z.

6. Jacobi fields on E

6.1. The Raychaudhuri equation forAΓ

In the geodesic case[3], Crampin and Prince work on the tangent bundleTM of a dif-
ferentiable manifoldM with linear connection. There they find a propagation equation for
AZ using the curvatureRZ = R(·, Z)Z. However, in the present situation an attempt to use
curvature

R̂(X, Y )Z := ∇̂X∇̂YZ − ∇̂Y ∇̂XZ − ∇̂[X,Y ]Z

to find a propagation equation forAΓ in the same way fails becausêR(X,Γ )Γ ≡ 0. We
proceed by directly differentiatingAΓ .

Lemma 6.1.

∇̂Γ AΓ (X) = ∇̂Γ T̂ (Γ,X).

Proof.

∇̂Γ AΓ (X)= ∇̂Γ (T̂ (Γ,X))− T̂ (Γ, ∇̂Γ X)
= {∇̂Γ T̂ (Γ,X)+ T̂ (Γ, ∇̂Γ X)} − T̂ (Γ, ∇̂Γ X) = (∇̂Γ T̂ )(Γ,X). �
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Lemma 6.2.

LΓ AΓ = ∇̂Γ AΓ .

Proof. Expand and useEq. (5.3).

(LΓ AΓ )(X)=LΓ (AΓ (X))− AΓ (LΓ X) = [Γ,AΓ (X)] − AΓ ([Γ,X])

= ∇̂Γ (AΓ (X))− AΓ (AΓ (X))− AΓ (∇̂Γ X − AΓ (X))
= ∇̂Γ (AΓ (X))− AΓ (∇̂Γ X) = ∇̂Γ AΓ (X). �

Recall that tr(AΓ ) = 0 so that tr(LΓ AΓ ) = 0 and so a generalised Raychaudhuri equation
will be trivial, however, we can obtain a propagation equation forAΓ alongΓ directly from
the above lemmas which we will call the generalised Raychaudhuri equation forΓ . We
give it in two forms.

Theorem 6.3.

LΓ AΓ (X) = (∇̂Γ T̂ )(Γ,X).
Equivalently,

LΓ AΓ = −∇̂Γ Φ.

Proof. The first follows immediately from the lemmas. It follows fromLemma 6.2and
Proposition 5.1or its corollary that

LΓ AΓ = ∇̂Γ AΓ = −∇̂Γ Φ. �

In coordinates,

LΓ AΓ = (Γ ba Φ
c
b − Γ cb Φba − Γ (Φca))Vc ⊗ θa.

The generalised Jacobi equation deals with Lie-dragged vector fields along integral curves
of Γ .

Theorem 6.4 (The Jacobi equation for̂∇). Let X satisfyAΓ (X) = ∇̂Γ X (equivalently
[Γ,X] = 0). Then

∇̂2
Γ X = (LΓ AΓ + A2

Γ )(X). (6.1)

Proof.

∇̂2
Γ X= ∇̂Γ ((AΓ (X))) = (∇̂Γ AΓ )(X)+ AΓ (∇̂Γ X)

= (LΓ AΓ )(X)+ AΓ (AΓ (X)) = (LΓ AΓ + A2
Γ )(X). �

We claim thatEq. (6.1)is a generalised geodesic deviation equation for an arbitrary SODE.
The following corollary shows that the horizontal component ofEq. (6.1)is the generalised
Jacobi equation given in[2] (and that the vertical component is theD̂Γ derivative of the
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horizontal one). This is the same as the generalisation given in[10]. First we need the
following lemma.

Lemma 6.5. For anyX ∈ X(E)
[Γ,X] = 0 ⇔ D̂Γ XΓ = 0, D̂Γ XH = XV , D̂Γ XV = −Φ(XH).

Proof. Use [Γ,X] = 0 ⇔ AΓ (X) = ∇̂Γ X, Proposition 4.3and(5.5). �

Corollary 6.6. Let X satisfy[Γ,X] = 0. Then the horizontal and vertical components of
(6.1)are, respectively,

D̂2
Γ XH = −Φ(XH), D̂2

Γ XV = −D̂Γ (Φ(XH )).
Proof. A straightforward application of the definition of∇̂ from Proposition 4.3gives, for
arbitraryX,

∇̂Γ (∇̂Γ X) = (D̂2
Γ XΓ )

Γ + (D̂2
Γ XH )

H + (D̂2
Γ XV )

V .

Eq. (5.5)gives

A2
Γ (X) = −(Φ(XH ))H −Φ(XV )V .

Applying Lemma 6.2, (5.5)andLemma 6.5, we have

(LΓ AΓ )(X)= (∇̂Γ AΓ )(X) = ∇̂Γ (AΓ (X))− AΓ (∇̂Γ X)
= (D̂Γ XV )H − D̂Γ (Φ(XH ))V − AΓ ((D̂Γ XH )H )− AΓ ((D̂Γ XV )V )
= (D̂Γ XV )H − D̂Γ (Φ(XH ))V +Φ(D̂Γ XH )V − (D̂Γ XV )H
= −D̂Γ (Φ(XH ))V +Φ(D̂Γ XH )V = −D̂Γ (Φ(XH ))V +Φ(XV )V .

Combining these three expressions inEq. (6.1)and equating horizontal and vertical parts
completes the proof. �

Remark 6.7.

1. The vertical component of our generalised Jacobi equation is theD̂Γ derivative of the
horizontal one because, byLemma 6.5,

D̂2
Γ XH = −Φ(XH) ⇒ D̂Γ XV = −Φ(XH).

2. From the proof, for anyX ∈ X(E),
(LΓ AΓ + A2

Γ )(X)= −Φ(XH)H −Φ(XV )V − D̂Γ (Φ(XH ))V +Φ(D̂Γ XH )V
= −Φ(XH)H −Φ(XV )V − (D̂Γ Φ)(XH )V ,

which should be compared with the result ofTheorem 3.8:

LZAZ + A2
Z = Φ̄.
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Appendix A. Tensor character of AZ

Our analysis begins with a given SODE, and parameterisation. Hence for us the basic
geometrical object is, by construction, a product manifold—the graph space of the configu-
ration space of the system. Therefore, we consider an object to betensorialif its coordinate
representation is unchanged under coordinate transformations which preserve the first fac-
tor of the graph spaceR ×M. The object of this section is to establish the tensor character
of AZ.

We introduce new coordinates(t̂ , x̂a), indicated by an overhat, onR × M such that
coordinate transformation respects the product structure of the graph space (i.e. preserves
projection onto theR factor). The new coordinates(t̂ , x̂a) depend on(t, xa) by

t̂ = t, x̂a = X̂a(t, xb) (A.1a)

with inverse

t = t̂ , xa = Xa(t̂, x̂b). (A.1b)

Change of coordinate bases onR ×M are given by the following equations:

∂

∂t
= ∂

∂t̂
+ ∂x̂b

∂t

∂

∂x̂b
,

∂

∂xa
= ∂x̂b

∂xa

∂

∂x̂b
, (A.2a)

dt = dt̂ , dxa = ∂xa

∂t̂
dt̂ + ∂xa

∂x̂b
dx̂b. (A.2b)

Change of basis formulae in the reverse direction are obtained by interchanging the roles of
the hatted and unhatted coordinates. We indicate components of tensor fields with respect
to the new coordinate bases in the obvious way. TakingZ, for example,

Z = dt̂ (Z)
∂

∂t̂
+ Ẑa ∂

∂x̂a
,

whereẐa := dx̂a(Z). On the other hand, we defineˆ̄θa := dx̂a − Ẑa dt̂ .
SinceZ(t̂ ) = Z(t) = 1 the transformation(A.1a) and (A.1b)preserves the coordinate

representation ofZ, i.e.

Z = ∂

∂t
+ Za ∂

∂xa
= ∂

∂t̂
+ Ẑb ∂

∂x̂b
.

A similar calculation shows

ˆ̄θa = ∂x̂a

∂xb
θ̄b. (A.3)
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The coordinate transformation(A.1a) and (A.1b)induces a transformation of the adapted
coordinate chart(t, xa, ua) onE as follows:

t̂ = t, x̂a = X̂a(t, xb), ûa = Ûa(t, xb, ub) (A.4a)

with inverse

t = t̂ , xa = Xa(t̂, x̂b), ua = Ua(t̂, x̂b, ûb). (A.4b)

The transformation of coordinate bases onE is given by

∂

∂t
= ∂

∂t̂
+ ∂x̂b

∂t

∂

∂x̂b
+

(
∂2x̂b

∂t2
+ ∂2x̂b

∂t∂xa
ua

)
∂

∂ûb
,

∂

∂xa
= ∂x̂b

∂xa

∂

∂x̂b
+

(
∂2x̂b

∂xa∂t
+ ∂2x̂b

∂(xa)2
ua

)
∂

∂ûb
,

∂

∂ua
= ∂ûb

∂ua

∂

∂ûb
= ∂x̂b

∂xa

∂

∂ûb
,

dt = dt̂ , dxa = ∂xa

∂t̂
dt̂ + ∂xa

∂x̂b
dx̂b,

dua =
(
∂2xa

∂t̂2
+ ∂2xa

∂t̂∂x̂b
ûb

)
dt̂ +

(
∂2xa

∂x̂b∂t̂
+ ∂2xa

∂(x̂b)2
ûb

)
dx̂b + ∂xa

∂x̂b
dûb. (A.5)

Again, changing bases in the reverse direction may be obtained from those above by inter-
changing the roles of the hatted and unhatted coordinates. Now, we have that

ûb = ∂x̂b

∂t
+ ∂x̂b

∂xa
ua.

We make the assumption that our SODE

Γ = ∂

∂t
+ ua ∂

∂xa
+ f a ∂

∂ua

is tensorial so that thef a ’s transform as accelerations, i.e.

f̂ a := dûa(Γ ) = ∂2x̂a

∂t2
+ 2

∂2x̂a

∂t∂xb
ub + ∂2x̂a

∂uc∂xb
ubuc + ∂x̂a

∂xb
f b. (A.6)

GivenZ ∈ X(R×M), we remind the reader thatσZ : R×M → E is defined byσZ(q) :=
(q, π0∗Z(q)), whereπ0 : R ×M → M andq ∈ R ×M. Letp ∈ σZ(R ×M), thenp =
(π0

1 (p), π0∗Z(π0
1 (p))). By definition the coordinate functionsua give the components of

a vector tangent toM relative to the coordinate basis{∂/∂xa}, clearlyua(p) will give the
ath spatial component ofZ, i.e.ua(p) = Za(π0

1(p)), an equation which will hold in any
adapted coordinate chart containingp. Therefore one may use, without fear of confusion,
the coordinate expression

∂f a

∂ub

∣∣∣∣
uc=Zc

(A.7)

to mean evaluation is to take place on the image of the section.
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The pullback of the connection coefficients,Γ̄ ab , transform as follows.

Lemma A.1.

¯̂
Γ
a

b = − ∂x
e

∂x̂b

∂2x̂a

∂t∂xe
− ∂xe

∂x̂b

∂2x̂a

∂xc∂xe
Zc + ∂xe

∂x̂b

∂x̂a

∂xd
Γ̄ de .

Proof. UsingEq. (A.6)

∂f̂ a

∂ûb
= ∂xe

∂x̂b

∂f̂ a

∂ue
= ∂xe

∂x̂b

(
2
∂2x̂a

∂t∂xe
+ 2

∂2x̂a

∂xc∂xe
uc + ∂x̂a

∂xb

∂f b

∂ue

)
.

Therefore, restricting to the image of the section one obtains

¯̂
Γ
a

b := − 1

2

∂f̂ a

∂ûb

∣∣∣∣∣
ûa=Ẑa

= −1

2

∂xe

∂x̂b

(
2
∂2x̂a

∂t∂xe
+ 2

∂2x̂a

∂xc∂xe
Zc + ∂x̂a

∂xd

∂f d

∂ue

∣∣∣∣
ua=Za

)

= − ∂x
e

∂x̂b

∂2x̂a

∂t∂xe
− ∂xe

∂x̂b

∂2x̂a

∂xc∂xe
Zc + ∂xe

∂x̂b

∂x̂a

∂xd
Γ̄ de . �

The following theorem shows that given two (adapted) coordinate representations of
AZ = σ ∗

ZPV , the components ofAZ

AZab
:= ∂Za

∂xb
+ Γ̄ ab , ÂZab

:= ∂Ẑa

∂x̂b
+ ¯̂
Γ
a

b

transform in the right way from one coordinate picture to the other.

Theorem A.2. The coordinate expression forAZ remains unchanged under change of
coordinates(A.1a)and(A.1b), i.e.AZ is tensorial so that if

AZ = AZab

∂

∂xa
⊗ θ̄ b = ÂZab

∂

∂x̂a
⊗ ˆ̄θb,

then

ÂZce = AZab

∂x̂c

∂xa

∂xb

∂x̂e
.

Proof. For any type(1,1) tensor fieldB, under change of coordinates(A.1a) and (A.1b)

Bab
∂

∂xa
⊗ θ̄ b =

(
Bab
∂x̂c

∂xa

∂xb

∂x̂e

)
∂

∂x̂c
⊗ ˆ̄θ,

where we usedEqs. (A.2a)–(A.3)to change basis. Hence to proveAZ is tensorial it remains
to show that

ÂZce = AZab

∂x̂c

∂xa

∂xb

∂x̂e
.
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Now, ÂZab = (∂Ẑa/∂x̂b)+ ¯̂
Γ
a

b . Consider the first term∂Ẑa/∂x̂b. UsingEq. (A.5),

∂Ẑa

∂x̂b
= ∂

∂x̂b
(dx̂a(Z)) =

(
∂xc

∂x̂b

∂

∂xc

) (
∂x̂a

∂t
dt (Z)+ ∂x̂a

∂xd
dxd(Z)

)

=
(
∂xc

∂x̂b

∂

∂xc

) (
∂x̂a

∂t
+∂x̂

a

∂xd
Zd

)
= ∂xc

∂x̂b

(
∂2x̂a

∂xc∂t
+ ∂2x̂a

∂xc∂xd
Zd+∂x̂

a

∂xd

∂Zd

∂xc

)
.

Combining this result and lemma(A.1a) and (A.1b)gives

ÂZab
= ∂Ẑa

∂x̂b
+ ¯̂
Γ
a

b = ∂xc

∂x̂b

∂x̂a

∂xd

∂Zd

∂xc
+ ∂xe

∂x̂b

∂x̂a

∂xd
Γ̄ de = ∂xc

∂x̂b

∂x̂a

∂xd

(
∂Zd

∂xc
+ Γ̄ de

)

= ∂xc

∂x̂b

∂x̂a

∂xd
(AZdc

)

as required. �
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